Forced quasi-periodic oscillations in strongly dissipative systems of any finite dimension
نویسندگان
چکیده
منابع مشابه
Quasi-periodic motions in strongly dissipative forced systems
We consider a class of ordinary differential equations describing one-dimensional systems with a quasi-periodic forcing term and in the presence of large damping. We discuss the conditions to be assumed on the mechanical force and the forcing term for the existence of quasi-periodic solutions which have the same frequency vector as the forcing.
متن کاملConstruction of quasi-periodic response solutions in forced strongly dissipative systems
We consider a class of ordinary differential equations describing one-dimensional quasiperiodically forced systems in the presence of large damping. We give a fully constructive proof of the existence of response solutions, that is quasi-periodic solutions which have the same frequency vector as the forcing. This requires dealing with a degenerate implicit function equation: we prove that the l...
متن کاملConvergent series for quasi-periodically forced strongly dissipative systems
We study the ordinary differential equation εẍ+ ẋ+ ε g(x) = εf(ωt), with f and g analytic and f quasi-periodic in t with frequency vector ω ∈ R. We show that if there exists c0 ∈ R such that g(c0) equals the average of f and the first non-zero derivative of g at c0 is of odd order n, then, for ε small enough and under very mild Diophantine conditions on ω, there exists a quasi-periodic solution...
متن کاملForced Oscillations in Fluid Tori and Quasi–Periodic Oscillations
The kilo-Hertz Quasi–Periodic Oscillations in X–ray binaries could originate within the accretion flow, and be a signature of non–linear fluid oscillations and mode coupling in strong gravity. The possibility to decipher these systems will impact our knowledge of fundamental parameters such as the neutron star mass, radius, and spin. Thus they offer the possibility to constrain the nuclear equa...
متن کاملClassification of Spatially Localized Oscillations in Periodically Forced Dissipative Systems
Formation of spatially localized oscillations in parametrically driven systems is studied, focusing on the dominant 2:1 resonance tongue. Both damped and self-excited oscillatory media are considered. Near the primary subharmonic instability such systems are described by the forced complex Ginzburg–Landau equation. The technique of spatial dynamics is used to identify three basic types of coher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2019
ISSN: 0219-1997,1793-6683
DOI: 10.1142/s0219199718500645